

## Cracking the Code: The Link Between Gaucher Disease and GBA-Associated Parkinson's Disease<sup>1-17</sup>





Type 2

Full abbreviations, accreditation, and disclosure information available at PeerView.com/GWQ40

### The Gaucher Disease and GBA-Associated Parkinson's Disease Connection

## Lysosomal diseases (LDs)

comprise 70+ rare, inherited disorders; Gaucher disease (GD) is the most common LD

## Some GD cases are first identified following a PD diagnosis,

underscoring the diagnostic overlap

## Neurological symptoms related to PD may precede GD diagnosis

## GBA-associated Parkinson's disease (GBA-PD)

is now recognized as distinct from idiopathic PD, with unique genetic and clinical features

## Clinicians managing PD should be alert

early referrals and genetic screening are essential for *GBA1*-PD

#### **Gaucher Disease**

A rare, inherited multisystem disorder

#### **Characterized by**

- Accumulation of Gaucher cells (activated macrophages) in multiple organs, such as the liver, spleen, bone marrow, and lungs
- Has clinically recognizable types based on primary involvement of CNS and rate of disease progression
- Progressive neurodegeneration in neuronopathic types: type 2 or acute and type 3 or chronic neuropathic Gaucher disease

#### **Incidence of Gaucher Disease**

- Global incidence across all types: 0.45-25.0 per 100,000 people
- In the United States: approximately 1 in 50,000 to 100,000

Type 3

• Among Ashkenazi Jewish individuals: approximately 1 in 500 to 1,000

#### **Neurologic Manifestations by GD Type**

Eye movement disorder



| GD Type                        | Prevalence, % | Characteristics                                                                                                                                                                                                |
|--------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type 1, non-neuronopathic      | >95           | Symptoms range from asymptomatic patients to childhood-onset systemic disease                                                                                                                                  |
| Type 2, acute neuronopathic    | ~1            | Severe prognosis with limited survival (<4 y)                                                                                                                                                                  |
| Type 3, subacute neuronopathic | ~5            | <ul> <li>Variable neurologic involvement</li> <li>Myoclonus which may appear first or later in life (type 3a)</li> <li>Severe systemic involvement (type 3b)</li> <li>Cardiac involvement (type 3c)</li> </ul> |



# Cracking the Code: The Link Between Gaucher Disease and GBA-Associated Parkinson's Disease<sup>1-17</sup>





Full abbreviations, accreditation, and disclosure information available at PeerView.com/GWQ40

#### **GBA-Associated Parkinson's Disease**

| Features              |                                                      |  |  |  |  |
|-----------------------|------------------------------------------------------|--|--|--|--|
|                       |                                                      |  |  |  |  |
| Onset                 | Earlier in homozygotes > heterozygotes > noncarriers |  |  |  |  |
| Progression           | Faster than typical PD                               |  |  |  |  |
| Motor symptoms        | Less bradykinesia, rigidity, and rest tremor         |  |  |  |  |
| Disease complications | More dyskinesia, motor fluctuations                  |  |  |  |  |
|                       |                                                      |  |  |  |  |
| Nonmotor symptoms     | Early cognitive impairment                           |  |  |  |  |
|                       |                                                      |  |  |  |  |
| Medication response   | +                                                    |  |  |  |  |
|                       |                                                      |  |  |  |  |
| Medication response   | ±, concern for post-op cognitive decline             |  |  |  |  |

- Incidence of GBA-PD: 3%-20% among PD cohorts; 1%-5% among healthy cohorts; varies with ethnic population
- Heterozygous GBA1 mutations occur in ~5%-10% of PD patients overall (up to ~20% in Ashkenazi Jewish PD patients), making GBA1 the single most common genetic risk factor for PD

- Most carriers will NOT develop PD in their lifetime (reduced penetrance)
  - GBA1 variants confer increased risk of PD but with reduced penetrance
  - Estimated penetrance is only
     ~1%-14% by 60 years of age, rising
     to ~10%-30% by 80 years of age



# Cracking the Code: The Link Between Gaucher Disease and GBA-Associated Parkinson's Disease<sup>1-17</sup>





Full abbreviations, accreditation, and disclosure information available at PeerView.com/GWQ40

#### **Common GBA Variants and PD Risk**

| GBA1 Variant (protein change)   | GD Classification   | PD Risk (OR) | Notes                                                                                                                                   |
|---------------------------------|---------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| N370S (Asn370Ser) (aka N409S)   | Mild (GD1)          | ~2-8         | <ul><li>Most common GD mutation</li><li>Increases PD risk but later onset vs severe variants</li></ul>                                  |
| L444P (Leu444Pro) (aka L483P)   | Severe (GD2/3)      | ~6-30        | <ul><li>Common severe mutation</li><li>High PD risk; earlier onset and higher dementia risk</li></ul>                                   |
| E326K (Glu326Lys)               | Risk only (non-GD)  | ~1.6-3.3     | <ul> <li>Does not cause GD on its own</li> <li>Fairly common allele (~1% frequency) associated with PD and cognitive decline</li> </ul> |
| T369M (Thr369Met) (aka T408M)   | Risk only (non-GD)  | ~1.4-5.0     | <ul> <li>Does not cause GD</li> <li>Increases PD risk</li> <li>Linked to earlier PD onset and faster progression</li> </ul>             |
| 84dupG (84insGG, Leu29Alafs*18) | Severe (frameshift) | ~10-14       | • Frameshift GD mutation (historical "84GG" allele); confers high PD risk                                                               |
| R496H (Arg496His) (aka R535H)   | Mild (GD1)          | ~3-4         | <ul><li>Mild GD variant seen in PD</li><li>Intermediate risk increase</li></ul>                                                         |

### Comparative Clinical Characteristics by GBA1 Mutation Status

| Clinical Feature          | Severe GBA Mutation (L444P)                                                   | Mild GBA Mutation (N370S)                                                                                                          | No GBA Mutation (Idiopathic PD)                                                    |
|---------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Typical PD onset age      | Earlier (often ~5 years younger<br>than idiopathic)                           | Slightly earlier than idiopathic but later than severe carriers                                                                    | Later onset (older adulthood);<br>baseline risk group                              |
| Motor symptom progression | Faster decline in motor function and earlier complications (eg, fluctuations) | Intermediate progression; noticeable but not as accelerated as severe carriers                                                     | More gradual progression (slower decline relative to GBA-PD)                       |
| Cognitive impairment      | High risk; earlier and more severe cognitive decline; frequent PD dementia    | Moderate risk; cognitive issues can occur (eg, mild cognitive impairment), but dementia tends to occur later than in severe GBA-PD | Lower risk; many patients have no dementia until very late disease (if at all)     |
| Nonmotor symptoms         | Pronounced (depression, REM sleep disorder, autonomic dysfunction are common) | Present, with higher frequency than idiopathic PD, but variable in severity                                                        | Present in some, but generally less frequent or severe than in <i>GBA</i> carriers |
| Disease duration          | Often shorter because of rapid progression and earlier dementia               | Potentially long, but quality of life may be affected by mid-stage cognitive/mood symptoms                                         | Often long (20+ years), especially if cognition is preserved                       |

<sup>1.</sup> Linari S et al. Clin Cases Miner Bone Metab. 2015;12:157. 2. Huang WJ et al. Eur Rev Med Pharmacol Sci. 2015;19:1219. 3. Mehta A. Eur J Internal Med. 2006;17:52. 4. Baris HN et al. Pediatr Endocrinol Rev. 2014;12:72. 5. https://ghr.nlm.nih.gov/condition/gaucher-disease. 6. Machaczka M et al. J Inher Dis. 2011;34: 233-235. 7. Castillon GC et al. J Clin Med. 2022;12:85. 8. Cook L et al. Neurol Clin Pract. 2021;11:69-77. 9. Cook L et al. Curr Neurosci Rep. 2021;21:17. 10. Goker-Alpan O et al. J Med Genet. 2004;41:937-940. 11. Sidransky E et al. N Engl J Med. 2009;361:1651-1662. 12. Klein C et al. Cold Spring Harb Perspect Med. 2012;2:a008888 2. 13. Smith L et al. Cells. 2022;11:1261. 14. Horowitz M et al. Hum Mutat. 1998;12:240-244. 15. Smith L et al. Cells. 2022;11:1261. 16. Cohen ME et al. Parkinsonism Relat Disord. 2024;124:106990. 17. Sidransky E. Mol Genet Metab. 2004;83:6-15.