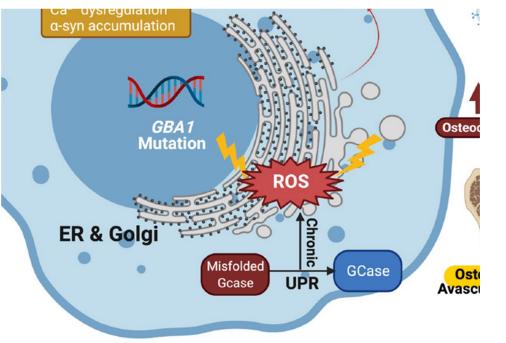

Gaucher Disease - More Than Just a Lipid Storage Disease

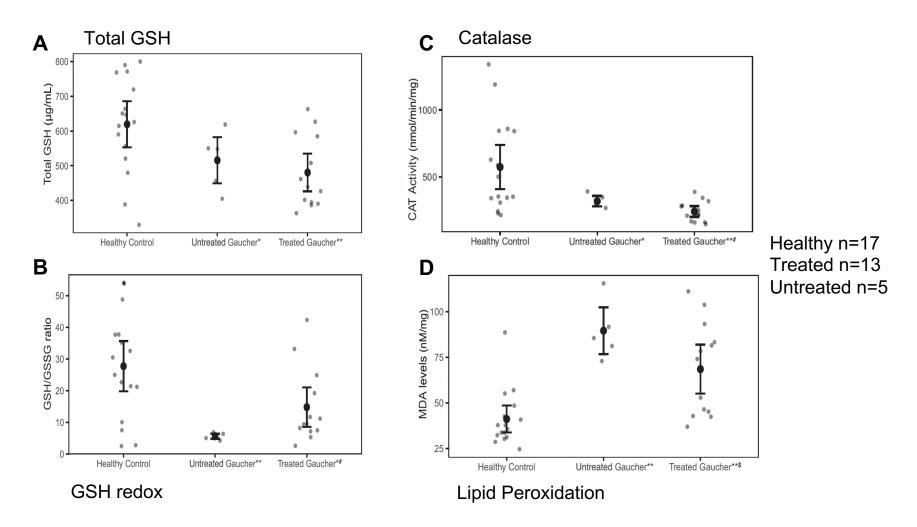
Reena Kartha, MS, PhD Assistant Professor & Associate Director (Translational Pharmacology) Center for Orphan Drug Research Department of Experimental & Clinical Pharmacology

GCA Patient & Family Conference 25th Oct, 2022



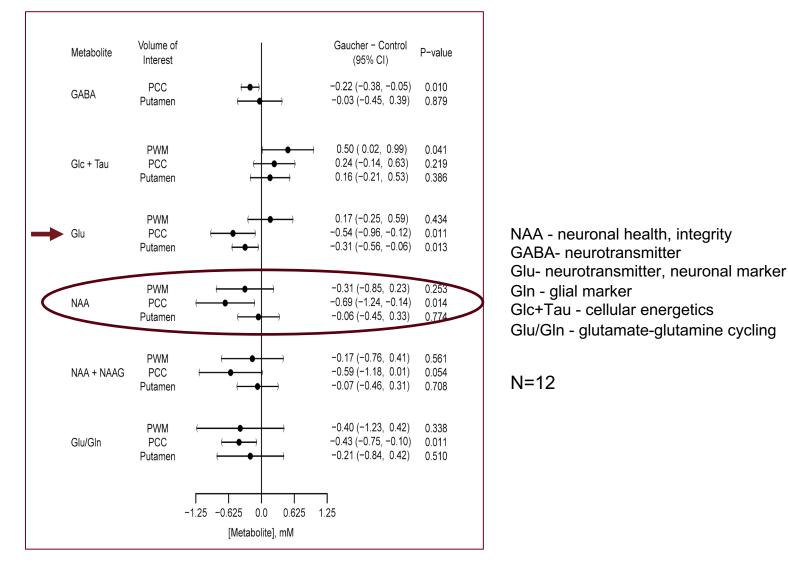
Gaucher Disease Pathophysiology

Oxidative Stress


- Reactive oxygen species (ROS) are formed as a by-product of the unfolded protein response (UPR) process
- Glutathione (GSH) acts as an antioxidant
- Lead to other comorbidities

↑ ROS + ↓ GSH = ↑ Oxidative Stress (harmful to body)

Increasing GSH can protect from harmful effects



Oxidative Stress Markers

Mean Differences in Key Neurometabolites

NAA- N-acetylaspartate; NAAG- NAA glutamate; Glu-glutamate; Gln-glutamine; Glc-glucose; Tau-taurine; GABA-gamma amino butyric acid

New Therapeutic Approaches

 Table 1
 Current emerging interventional therapies for Gaucher disease

Name	Туре	Target	Details	Dose	Outcome	Sources
Ambroxol	Pharmacological chaperone	Type 1 GD, ages 18–75, suboptimal response to ERT	Clinical trial phase 2 study	600 mg/day	Platelet count, bone mineral density, Lyso-GB1 ^a biomarker	NCT03950050
N-acetylcysteine (NAC)	Antioxidants	Type 1 GD, Ages 18 years and older	Clinical trial phase 2 study	1800 mg NAC twice daily for approximately 90 days	Changes in neurometabolites, changes in blood biomarkers of oxidative stress and inflammation	NCT02583672
Coenzyme Q10 (CoQ10)	Antioxidants	Chemically induced Gau- cher macrophages	In vitro cellular model	CoQ 25 µM	Improve mitochondria function and oxidative stress	[236]
Arimoclomol	Pharmacological chaperone	Type 1 or 3 GD, ages 4–60	Clinical trial phase 2 study	100, 200, 400 mg	Percentage change in serum chitotriosidase levels	NCT03746587
GuardOne	Lentiviral vector gene therapy	Type 1 GD, ages 16–35	Clinical trial phase 1/2 study	A single dose of AVR- RD-02 infusion	Treatment-emergent adverse events, GCase enzyme activity	NCT04145037
PROVIDE	Adeno-associated virus serotype 9 (AAV9) gene therapy	Type 2 GD, up to 24 months	Clinical trial phase 1/2 study	A single dose of PR001 administered intracisternally	Number of adverse events, changes in immunogenicity of AAV9 and GCase in blood & cerebrospinal fluid	NCT04411654
FLT201	AAV8 gene therapy	Type 1 GD	In vitro cellular model (human PBMCs and macrophages) & animal studies (mice, rhesus macaque)	A single dose of FLT201 infusion	Enhanced GCase expression, lowers substrate levels	[237]

^aAlternate name for Lyso-GL1

N-acetylcysteine (NAC)

- Pulmonary disorders Mucomyst (acetylcysteine oral solution); approved in 1963; mucolytic agent
- Acetaminophen overdose Acetadote (intravenous solutions); Orphan drug designation in 2004
- Over the counter supplements (capsules, effervescent tablets)

 A safe, effective, low-cost antioxidant/anti-inflammatory that would offer patients a new, adjunctive therapeutic option

Oral NAC as Adjunctive Therapy

Study design

Baseline: In patients and healthy subjects; blood samples collected at 3 different time points over ~90 days; imaging.

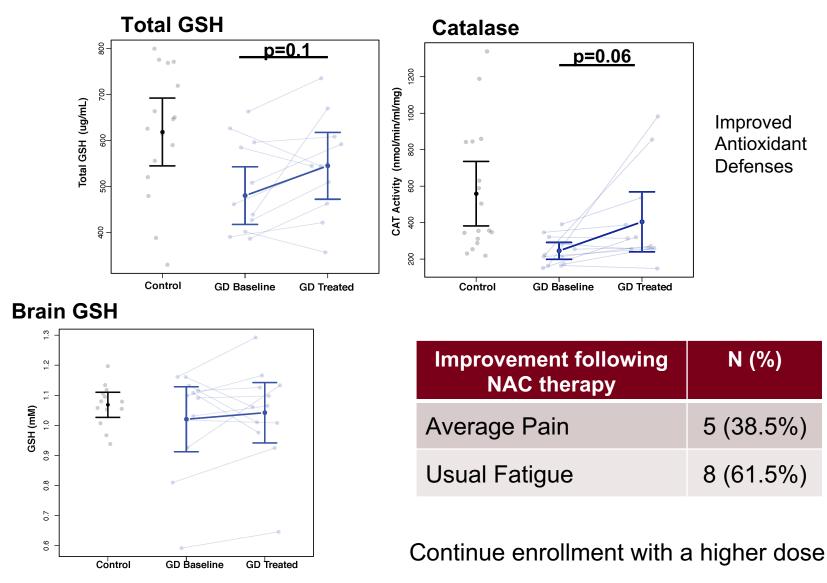
Intervention: Patients are given PharmaNACTM @ 3600mg/day for 90 days. Blood collected at 3 time points; a second scan at the end of therapy and PK blood sampling.

Follow-up: End of study visit 3 months after intervention.

Blood Analysis	Analytes	
Oxidative Stress markers	Total GSH, antioxidant enzymes, lipid and protein modifications	
Inflammatory markers	Anti- and pro-inflammatory markers	
Pharmacokinetic Analysis (exposure-response modeling)	Total NAC, Cysteine, GSH	

Participant Characteristics

Covariate	Control	GD1
	(n = 17)	(n = 13)
Age (years)	38.8 (14.9)	46.9 (12.0)
Female	9 (50.0%)	8 (61.5%)
Caucasian	12 (75.0%)	12 (92.3%)
Mutation status	NA	
N370S/N370S		5 (38.5%)
N370S/L444P		5 (38.5%)
N370S/unknown		1 (7.7%)
N370S/R463C		1 (7.7%)
Unknown		1 (7.7%)
Years on therapy	NA	16.1 (8.3)
ERT		6 (46.1%)
SRT		7 (53.8%)



Baseline Pain and Fatigue Assessments

Varia	GD1 (n = 13)	
Brief Pain Inventory(BPI)	0-2 (Mild pain)	8 (61.5%)
Average pain; 0-10	3-6 (Moderate pain)	5 (38.5%)
Brief Fatigue Inventory (BFI)	1-4 (Mild-moderate fatigue)	9 (69.2%)
Usual fatigue in the last 24 hours; 0-10	5-8 (Moderate-severe fatigue)	4 (30.8%)
History of analgesic use for chro	6 (46.2%)	

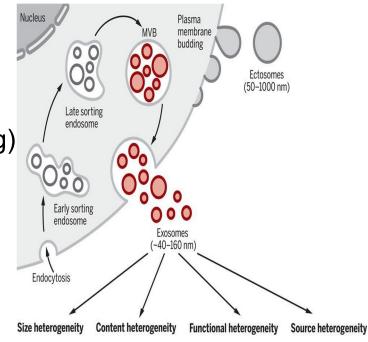
Preliminary Results

Effect on Glucocerebrosidase (GCase) Activity

- NAC and Cys can increase GCase activity in patientderived skin cells.
- Anecdotal report from a physician (n=3; GBA1 carriers)

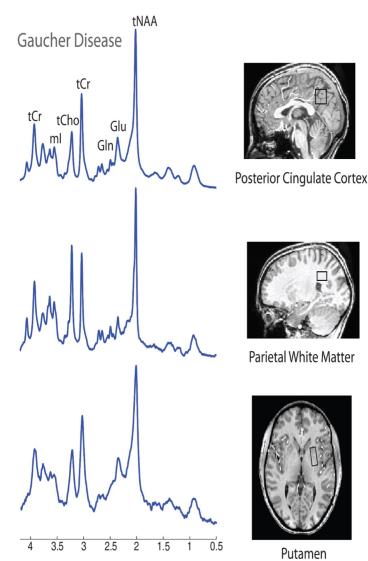
Carrier Mutations	% change in GCase activity	
N370S (mild)	67% increase	
IVS 2+1 (null)	37.4% increase	
IVS 2+1 (null)	19.6% decrease	

• Indicate mutation-specific chaperone effect.


Inflammatory Markers in GD1

- Extension of Oxidative Stress study (NCT02437396)
- Characterize novel inflammatory markers
- Enroll 10 untreated and 5 treated patients with GD1
 - 3 visits over a 3-month period
 - Provide a tablespoon of blood at each visit
 - We will run inflammatory assays
 - Home visit by a nurse/phlebotomist

Extracellular Vesicles (EV) Study


- Characterize whether having a GBA1 mutation can change the quantity or content of small microparticles vesicles
- Enroll 10 patients with untreated GD1 10 obligate carriers 10 healthy volunteers
- Provide 2 fasting samples in 3 months
 - Genetic testing (whole GBA sequencing)
 - EV characterization
- Home visit by a nurse

Magnetic Resonance Spectroscopy in GD3

- Characterize MRS profiles in GD3
- Enroll 5 patients with GD3
- One visit to the UMN to provide a blood sample and complete the scan

Chemical Shift (PPM)

Acknowledgements

Jim Cloyd, PharmD Neal Weinreb, MD Heather Lau, MD Marcia Terluk, PhD Jaehyeok Roh, PharmD Pharmacy & graduate students Undergraduate students

Funding

- NIH-RDCRN Lysosomal Disease Network
- UMN Center for Orphan Drug Research Foundation funds
- Sanofi-Genzyme
- Pfizer
- Takeda
- All Participants with GD1

UNIVERSITY OF MINNESOTA Driven to Discover®

Crookston Duluth Morris Rochester Twin Cities

The University of Minnesota is an equal opportunity educator and employer.